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Conditions for the absence of bound states for three-body 
systems 

H Grosset 
Institut fur Theoretische Physik der Universitat Wien, Boltzmanngasse 5 ,  A- 1090 Wien, 
Austria 

Received 15 November 1976, in final form 17 January 1977 

Abstract. We combine operator inequalities with the Feshbach formalism and recently 
derived functional inequalities and obtain a condition for the absence of three-body bound 
states in the case where one particle is assumed to be fixed. 

1. Introduction 

Although there exist some methods for estimating the number of two-body bound 
states (Simon 1976), no general procedures are known for more complicated systems. 
For calculating scattering length and phases especially it is necessary to have some 
knowledge about the number of bound states. In this paper we consider a three-particle 
system, where one particle has infinite mass, the two others are attracted by the centre 
but repel each other (2m = 1): 

It turns out that the potentials may even be non-central. 

a domain 9 dense in X = X1 0 X2, Xi = L2(d3xi ). All that we require is: 
H should be a self-adjoint operator (Simon 1972, Reed and Simon 1972) defined on 

(a )  the existence of some LP-norm estimates; 
( 6 )  a knowledge of the ground state wavefunction 4 and the first two energy levels 

eo, e l  of the two particle system; 
(c) if the spectrum of Ho is given by 2e0, eO+e1,. . . ,eo, 2e1,. . . the essential 

spectrum$ of H should start at eo, as one would expect physically for potentials 
going to zero at infinity; 

( d )  eo < 2e1 (assumed for simplicity); 
(e) in the following we will project one particle in the ground state, the other will 

see an effective potential. The number of two-body bound states within that 
potential should be zero (see equation (6) ) .  

It is known that assumption (c) is valid for a large class of potentials (Hunziker 1966). 
According to (c) we will investigate states below eo. 

t Now at Theory Division, CERN, 1211 Geneva 23, Switzerland. 
$ There are different ways of breaking up the spectrum of an operator A (Reed and Simon 1972, pp 230-7): 
A E cress if and only if the spectral projection operator on the interval (A -E, A + E ) :  P(A-eA +c{A) is infinite for 
all € >o. 
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The well known projection operator formalism cannot be used directly to prove the 
absence of bound states. For Coulomb-like potentials especially one has to raise an 
infinity of bound states of Ho up to the beginning of the continuum. Moreover, to deal 
with such situations we will combine the Feshbach formalism with operator inequalities. 

2. Presentation of the inequality 

Our starting point will be an equation similar to the Feshbach equation of nuclear 
physics. To formulate it we will need two lemmas. 

Lemma 1.  Let P 2  = P = P', Q = 1 - P, then 

P(Ph-'P)-'P = PhP - PhQ( QhQ)-'QhP 

if the inverse operators exist on the appropriate subspaces. 

Proof. 1 - (1 - P)hQ(QhQ)-'Q = P ;  multiplying from the left by P K '  and from the 
right by hP gives 

P+Ph-'PhQ(QhQ)-'QhP = Ph-'PhP 

which proves (2). 

Lemma 2. Let h be a self-adjoint operator on X: 
c e s s @  1 = [EO, a) cd(h) = {Ei/G < E O ) , ?  

let P be an orthogonal operator P 2  = P = P', denote Q = 1 - P and assume that the 
inverse of Q(h -E)Q exists on QX; then E 5  cr,(h)t*3 PX,  so that 

{P(h -E)P-PhQ[Q(h -E)Q]-'QhP}$ = 0. (3) 

Proof. ( a )  E 5 crd(h), (h -E)#  = 0. Projecting onto PX and QX gives 

P(h -E) (P  + Q)# = 0, Q(h - E ) ( P + Q ) $ = O .  
Since we assumed the existence of the inverse of Q(h -E)Q we obtain from the second 
part 

Q#=- [Q(h  -E)Q]-'QhP#. 
Insertion into the first part gives (3). 

(b) Let E be a solution of (3), E crd(h) then P(h -E)- 'P  exists and has an inverse 
on P X ;  using lemma 1 contradicts (3). 

Now take for h in lemma 2 our Hamiltonian and for the projection P2 = 1 0 R2 
where R2 = (#(xz)) (4 ( x z ) (  should project onto the ground state of p i  - V(x,) and define 

hi =P~(H-~)P~-PZV~ZQZCQZ(~-E)QZI-~QZV~ZPZ~P~(~-E)P~- Vopt. (4) 
Lemma 2 tells us that the number of bound states of H below E,, equals the number of 
bound states of hl defined on P2X with E <eo.  The last part of h l ,  usually called the 

t U,, denotes the discrete spectrum, which is the part of the spectrum consisting of isolated points of finite 
multiplicity: A if and only if P(,,-rJ++,)(A) is finite dimensional for some e > O .  
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optical potential, includes the influence of excited states. The assumption that Q ( H -  
E)Q has an inverse will be further specified in equation (6). 

Lemma 3. Let A >I3 be two self-adjoint operators on 3, ai, bi their eigenvalues, then 
ai 2 bi. 

This ordering theorem, a well known consequence of the minimum-maximum 
principle will be used together with lemma 4 to construct a lower bound operator on the 
optical potential. 

Lemma 4 .  Let v 3 0, P = P2 = P+, then v 3 P(Pv-'P)-'P. 

The proof and applications have been given several times (W Thirring, T7 Quanten- 
mechanik, Lecture Notes, University of Vienna, Grosse ef a1 1976). To proceed, we 
observe that replacingE in V,,, by eo gives a lower bound; furthermore applying lemma 
4 gives 

h 1 3 hz = Pz(H-E)Pz -P2 V1202[02(f fo  + Piu)- E O ) Q Z I - ~ Q ~  V12P2 
( 5 )  

Since in general Q2(HO+ Plv)-e0)Q2 will not be bounded by a positive c-number we 
proceed as follows. 

Pl(P1 V;:PI)-'PI =P& P1=R1012. 

Observing that [P, h]  = 0 implies 

h-' = P(PhP)-'P+ Q(QhQ)-'Q, 

we may divide V,,, into two parts choosing P = R I  0 12, R I  = (q5(x1)) (#(xl)l; for the 
second part we may use the c -number bound 

Qi Q2(Ho -EO)QI 0 2  3 ( 2 ~  1 - EO)QI 0 2  E SEQI Q2 > 0 
so that we obtain 

h2 S h3P2 

1 
h3 = p : -  V(xJ+(42V1242)- v:pt(xl)-~ v:;t(xl> 

v:pt = ( 4 2  V12PIQ2(Q2H4Q2)-1Q2 V1242) 

@i =pi -  v2(~2) + ~ 4 ( ~ 2 )  = P $ -  vefi(x2). 

V&t= (42V1201Q2V1242) 

Now we can state our condition for the absence of bound states. 

Theorem 1. Let H be given as described in 0 1.  Assume that there exists a p  such that 

and p 3 1 if V,, is radial symmetric, p 3 3/2 otherwise, then under the condition that 
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1 s q ,  p ,  r, s, t s w I+-=-+-  2 2 1  I+-=-+-  2 2 1  2 = - + - + - ,  1 1 1  
CT r q' 7 t p' r s t  

for some p 3 3/2, there exists no three-body bound state. 

Remarks. Condition (6) guarantees the absence of two-body bound states for VeR; such 
a condition has been derived by Glaser et a1 (1976). V- always denotes the negative 
part of the potential. The constants K , , ,  s 1 enter through Young's inequality and will 
be specified below. 

Proof. We will show that the functional which corresponds to h3: 

is positive under the stated conditions. 
As an application of lemma 4 we first note that 

P2J-42 

since (6) implies that > 0. 
Next we make use of a result derived by Glaser et a1 (1976): 

where p has to be from a suitable chosen space of functions (e.g. C") such that the 
norms exist. Using Holder's inequality in the denominator and the recently derived 
sharp form of Young's inequality (Brascamp and Lieb 1976, Beckner 1975): 

j dnx dnyf(x)g(x -y)h (Y) ~ r , s , d l f l l r l ~ g l ~ , I ~ h ~ ~ ~  

for the numerator, and adjusting the Lp norms so that the p dependence drops out, an 
upper bound to (9) is obtained: 

2 2 1  I+-=-+-. 
7 t P  
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The second term of the optical potential describing the influence of states from Q1Q22 
can be bounded in the following way: 

~ x v ~ p ~ ~ ~ ~ 1 ~ ~ ~ 2 v : 2 ~ 2 ~ - ~ ~ 2 v 1 2 ~ 2 ~ 2 ~ x 1 ~ + I c y l ~ l v , ~ 1 ~ ~ 1 2  =Z,,k). (12) 

h 3 k )  3 ((r@'-')/+' xIl:p,cp - z1k) --+ 01 I Ve - v(x>* 

Putting these all together and using (10) again yields 

(13) ZIIk) 
S E  

With the help of Holder's inequality and assumption (6) the positivity of the functional 
h3k) is proved. 

3. Remarks 

( a )  To illustrate condition (6) for the absence of two-body bound states we remark that 
for p = 5, c::: = 31rJ3/16 and ()(V()3/2/c3/2)3/2 = (8/J3) V,, = pPs where V,, denotes the 
classical phase space volume 

so that (6) reads pps < 1. Actually a generalization is valid: the total number of 
two-body bound states N is bounded by NscV, , ,  and goes asymptotically for 
V =  Au, A +CO like N -  V,, (Glaser et a1 1976). 

( 6 )  To illustrate (7) we note that for p = p = q = a a weaker condition results (since 
K < 1): 

Considering the case where excited states give small contributions (7a) implies the 
absence of three-body bound states if the potential - V(1) +(42V12d)2), corrected by a 
contribution coming from the ground state of Ho as intermediate state, has no two-body 
bound states. 

(c) For Coulomb-like repulsive potentials VIZ = a/rI2 condition (7) is always 
violated since l / r 1 2  is in no L p  space. A way out will be the use of Sobolev's inequality 
(Reed and Simon 1975) instead of Young's inequality in the derivation. We did not 
include this since the usual proofs of Sobolev's inequality give no numerical constants 
for the bound. 

(d)  In addition to (c) a further problem arises for the H- atom where (Y = 1. The 
effective potential 

1 1 
Ve,(x,) = --+ 

x 1  x~+(4 /x1 ) -e~"* [ (4 /x1 )+11  

actually has one bound state, so condition (6) is violated. In other words by projecting 
one particle into the ground state the infinite number of bound states below eo is lifted 
into the continuum except for one state. A way out may be to restrict the Hamiltonian 
to (1 - P ,  0 P 2 ) X  and noting that 

(1 - P I 0  P2)h (1 --PI 0 P2) 3 E O (  1 - P I 0  P2) 



716 H Grosse 

would imply, that the number of three-body bound states of h is less than or equal to 
one. 

(e) One should add that recently it has been proved by a different method, that 
exactly one bound state exists for the H- atom (Hill 1976). 

(f) The condition 2e1 -eo > 0 can be relaxed by introducing a sum of appropriate 
projection operators. If one restricts oneself to the subspace of antisymmetric 
wavefunctions, S E  can be replaced by e2 + e3  - e l .  

(g) Note that in general inf,,(&p) will be zero, so that our division of V,,, is 
necessary. 

( h )  Although we formulated our condition for identical particle interactions, the 
generalization to other cases is obviously possible. 
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